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Abstract - Aiming at the trade-off between accuracy and 
efficiency in current local stereo matching, a fast stereo 
matching method based on adaptive window is proposed. The 
census transform combined with absolute differences (AD) is 
used for matching cost initialization. Then an iterative cost 
aggregation based on exponential step adaptive weight 
(ESAW) is adopted to improve the parallelism and execution 
efficiency. In disparity refinement stage, an adaptive window 
based on pixel’s color similarity and Euclidean distance is built 
for each unreliable point. Then the unreliable points are 
further classified as ‘occlusion’ and ‘mismatch’, and different 
refinement strategies are taken for different classifications. 
Finally, the proposed method is optimized with compute unified 
device architecture (CUDA) and evaluated on graphic 
processor. The experiment results show that the proposed 
method is the most accurate among the real-time stereo 
matching methods listed on the Middlebury stereo benchmark. 
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1. Introduction 
 Stereo matching is the process of finding 
corresponding points that represent the same object in 
different view images of the same scene. The distance 
between the coordinates of corresponding points in 
different views of images taken from different angles, 
namely disparity, could be used to compute the depth of 
the scene. Stereo matching, which is widely applied into 

three-dimensional modeling, motion capture and 
intelligent navigation for vehicles, is a key technique in 
stereo vision field. Simple as the principle of stereo 
matching is, it is still highly challenging to accurately 
computing the dense depth map, due to interferences in 
realistic scenes, such as the complex actual situation, 
severe occlusion, lighting variation and image noise.  
 The core work of stereo matching is to find the 
corresponding points representing the same object in 
left and right images. According to the difference in 
optimization methods, dense stereo matching can be 
classified into global method and local method. Global 
stereo matching correlates depth estimation of adjacent 
pixels together through introducing smooth constraints, 
and estimates the disparity of all pixels by solving a 
global objective function. While local stereo matching 
usually adopts a window-based approach to conduct 
searching and matching individually for each pixel. 
 Disparity maps of high precision can be gained by 
applying global optimization method, but due to its 
large number of parameters and high computation 
complexity, this method cannot be applied to systems 
with real-time requests. 
 In this paper, targeting the balance between 
algorithm’s accuracy and execution time, we present a 
novel real-time stereo matching method. With an 
adaptive window based disparity refinement process, 
the proposed solution can achieve the accuracy 
equivalent of global method, and the method supports 
parallel processing so it can be used for real-time video 
applications. 
 The rest of the paper is organized as follows. 
Section 2 explains and cites related works that perform 
stereo matching. Section 3 describes the procedure of 
disparity estimation, including matching cost 
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initialization and cost aggregation. Section 4 represents 
the details of disparity refinement, mainly focusing on 
occlusion detection and adaptive window construction. 
Section 5 shows the experimental results. Finally, we 
conclude with a brief summary in section 6. 
 

2. Related Work 
 A stereo matching algorithm tries to solve the 
correspondence problem for projected scene points and 
the result is a disparity map. A good summary of many 
stereo matching algorithms can be found in Brown et al. 
and Scharstein and Szeliski, which summarize and 
categorize the two-view stereo matching method and 
its evaluation system in a comprehensive way. Classical 
global methods include graph cut (Boykov et al. 2001) 
and belief propagation (Scharstein et al. 2003). While 
adaptive weight (Yoon and Kweon 2006) and variable 
window (Zhang et al. 2009) are two classical methods 
of local stereo matching, which can ensure relatively 
high computation precision while significantly reducing 
computation complexity. Because it is unnecessary to 
take into account the correlation between adjacent 
pixels, the implementation of local method is relatively 
easier and efficient. However, this method calls for an 
assumption that the depth values of the pixels inside 
the window are the same, which, under many 
circumstances (especially in bounding areas where 
depths are not continuous), cannot be fulfilled; 
therefore, choosing the proper size for windows is the 
key point in this method. Too small matched windows 
will invalidate the smoothing effect and amplify depth 
noise; whereas too big windows will result in error 
matching in some fine structures and discontinuous 
areas.  
 Recently, in order to improve the effect of stereo 
matching on occlusion and uncharacteristic areas, some 
global-local hybrid methods (Hirschmüller 2008) and 
segmentation-based method (Bleyer et al. 2010) are 
proposed, further enhancing accuracy of disparity map 
on the premise of slightly increased amount of 
computation. However, because of the fact that dense 
stereo matching requires the separate calculation of 
disparity for each pixel in the images, sequential 
computing based on single processors can hardly meet 
the real-time requests. 
 The most up-to-date literature show that with the 
improvement of the performance of GPGPU (general 
purpose graphic processing unit), using parallel 
programming techniques like CUDA (compute unified 
device architecture) to improve and optimize stereo 

matching has become a research hotpot. A good 
summary of many stereo matching algorithms can be 
found in M. Humenberger et al. (2010), which gives a 
brief overview of the work related to embedded real-
time stereo vision systems. A GPU-based system was 
introduced by Yang et al.. Using an SAD-based 
algorithm, they achieved a frame rate of 11.5 fps for an 
image size of 512 × 512 and 94 disparities on an ATI 
Radeon 9800 XT graphics card. Ernst and Hirschmueller 
(2008) proposed a semi-global matching approach 
(SGM) to overcome the drawbacks of local matching, 
and they implemented the algorithm on a Ge Force 
8800 ULTRA GPU reaches a frame rate of 4.2 fps at 640 
× 480 with 128 disparities and 13 fps at 320 × 240 with 
64 disparities. 
 Gong et al. (2007) implemented parallel 
acceleration for 6 mainstream local stereo matching 
methods, and conducted a comparative analysis of their 
execution performances. Yu et al. (2010), on the basis of 
adaptive weight method, put forward an iterative 
aggregation method using exponential step-size 
adaptive weight (ESAW), and improved the algorithm’s 
speed by nearly ten times through parallel optimization 
on GTX8800 graphic processing unit. Zhang et al. 
(2011) parallel optimized the variable window method, 
and proposed a fast bit-wised voting method to 
accelerate the post-processing procedure of the 
algorithm, enabling the algorithm to reach a speed of 
nearly 100fps when processing images with a 
resolution of 320x240. However, due to the dependence 
on data during the cost aggregation stage, in order to 
realize parallelization, the above methods always make 
a certain amount of trade-off on accuracy. In order to 
compensate for the accuracy loss of the algorithm 
during parallelization, Kowalczuk et al. (2013) 
presented a refinement method featuring iteration of 
horizontal and vertical similar to the aggregation stage 
to refine the initial disparity image, which effectively 
improves the accuracy of disparity map. But this 
method does not differentiate error points according to 
their types, so the estimation of disparity in occlusion 
areas is not quite satisfactory. 
 

3. Disparity Estimation 
 
3. 1. Matching cost initialization 
 Matching cost is the metric function to judge 
whether two pixels are similar, and it’s the only 
foundation for estimation of disparity. Therefore a good 
matching cost function plays a very important role in 
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improving the algorithm’s robustness in different 
scenes. Hirschmüller and Scharstein (2009) have 
studied and evaluated the commonly used matching 
cost functions at present, and after numerous 
experiments, they found that the matching cost function 
based on Census non-parametric transformation (Zabih 
and Woodfill 1994) has the most balanced performance 
in all test collections, with a particularly good 
adaptability to intensity distortion caused by lighting 
variation. The main idea of Census transform is to build 
a p-centered window for a random pixel p, and generate 
a bit-string for each p according to formula (1): 
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 Here I(p) means luminance value of pixel p, and 
N(p) is the p-centered transforming window. Thus, the 
similarity measurement between the two pixels can be 
expressed by the distance between bit-string after 
Census transformation, namely, Hamming distance: the 
smaller Hamming distance is, the higher the matching 
degree of the two pixels is. 
 Census transform calculates matching cost 
according to the relationship of size between two pixels 
instead of relying directly on the values, so it possesses 
a better adaptability to range distortion. However, we 
find out that the following two problems will occur if 
using Census transform as the only matching cost:  

1. Census transform has a lower pixel 
distinguishing degree for pixels in areas with 
simple textures and repeated structures. 
Because the specific pixel values are not 
considered, different pixels in these areas are 
likely to have the same Census transform 
values; 

2. Census transform has a lower tolerance of 
image noise. Because Census transform is 
highly dependent on the central pixel, when 
noise points appear in the central pixel, the 
matching result is unpredictable. It is also 
mentioned by Hirschmüller and Scharstein 
(2009) that the matching results based on 
Census transform are not quite satisfactory in 
an environment of intense noise. 

 

 Aiming the above problems and considering that 
the commonly used AD cost function has better 
matching effects in areas with smooth textures, this 
paper adopts the matching cost function that combines 
AD and Census transform together. For a random pixel 
p in the left view, establish a p-centered 9x7 window 
and define the matching cost of p as follows: 
 

census census AD AD
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 Here d is the presupposed disparity value, Dcensus 
and DAD are the matching costs based on Census 
transform and AD respectively, ρ(D,λ) is a normalized 
function, with the following computing formula: 
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 IL(x,y) and IR(x,y) refer to the gray values of 
corresponding pixels in left and right view respectively, 
Ccensus is calculated from Formula (1), λcensus, λAD and τ 
are prior parameters. Normalized function avoids the 
matching cost overly leaning to one certain type, and 
the λ is used for easily controlling the weights of the 
two matching cost, which enables the algorithm to 
combine well the advantages of Census and AD, and to 
have a better adaptability to intensity distortion and 
noise. Figure 1 demonstrates the stereo matching 
results using AD, Census and AD+Census as matching 
cost. It can be seen that in Tsukuba and Venus, the effect 
of AD is better than that of Census, but in Teddy and 
Cones, the effect of Census is better than that of AD. 
Nevertheless, AD+Census, combining the advantages of 
the two, performs the best under the four sequences 
with the lowest average error rate of all three methods. 
 
3. 2. Iterative cost aggregation 
 The work following matching cost initialization is 
to estimate the disparity value of pixels according to the 
matching cost. Inspired by the idea of ESAW (Yu et al. 
2010), this paper adopts the exponential step-size 
iterative aggregation method to estimate disparity. The 
basic thought of this algorithm is to construct a support 
window for each pixel, and then to use adaptive weight 
to aggregate the initial matching costs of the pixels in 
the window. It simplifies the original 2D aggregation 
into two 1D aggregations, namely horizontal and 
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vertical aggregation, and uses an exponential iterative 
process to further reduced the time complexity. After 
calculating the final matching cost of central pixel under 
every hypothetic disparity value, we use the common 
WTA strategy to select disparity value with the smallest 
matching cost as the initial disparity value of center 
pixel. 
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Figure 1. Results of stereo matching using different matching 

cost. 

 
 Compared to the traditional adaptive weight 
method (Yoon and Kweon 2006), the iterative 
aggregation method is more suitable for parallel 
processing, but there exists a certain amount of loss of 
accuracy during computation, which is mainly reflected 
in the following two aspects: 

1. The traditional adaptive weight method 
computes the weights both in target image and 
reference image during the stage of matching 
cost aggregation, but the parallel method 
usually computes just the pixel weight of the 
target image and abandons the weight of the 
reference image, as illustrated in formula (7). 
This is more suitable for parallel computation, 
but the matching cost after aggregation will 
have a lower distinguishing degree for 
different pixels. 
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2. In terms of weight calculation, exponential 

step-size iterative aggregation method 
discomposes the computation of a single 
weight into the result of many middle pixel 

weights’ multiplication, as illustrated in 
formula (8). When there is a big difference 
between the middle pixel rk and the two target 
pixels p,q, while the difference of target pixels 
themselves are relatively small, this computing 
method will cause a big error, and then lead to 
mismatch. This kind of mismatching is 
particularly prominent in the occlusion and 
edge area of the image. 
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 However, matching cost aggregation is the most 
time-consuming step in local stereo matching 
algorithm, so in this step it is necessary to exchange 
limited computation accuracy for a significant 
enhancement of execution time. This paper, in order to 
realize the algorithm’s balance between execution time 
and accuracy, takes the strategy of exchanging accuracy 
for time in the stage of disparity estimation so as to 
improve the execution time of the algorithm; then takes 
a refinement step in post-processing stage to verify and 
update the initial disparity values, exchanging a small 
time cost for the improvement of computation accuracy. 
 
4. Disparity Refinement 
 
4. 1. Occlusion and mismatch detection 
 This paper proposes a disparity refinement 
method based on adaptive windows. First we conduct a 
consistency check on left and right disparity images 
according to formula (9). dL and dR in formula (9) 
represent left disparity image and right disparity image 
respectively. Inspired by the work of Hirschmüller 
(2008), this paper further classifies error points into 
occluded points and mismatched points. According to 
the geometrical principle of stereo vision, if the 
corresponding point of a certain pixel point in the left 
view cannot be found in the right view, then its 
corresponding epipolar line in the right view should 
have no intersection with the disparity value of the 
right view, otherwise if the point in the scene can be 
seen in both views, then there must be an intersection. 
Therefore, we can use this principle to judge whether 
the error point is caused by occlusion or mismatch.  
 For the error point p in the left image, define 
dL(x,yp) and dR(x,yp) as the disparity values of pixels in 
same the row of p in left and right views respectively, 
define p’s corresponding epipolar line e(p,d) as a point 
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set about d, as illustrated in formula (10). If dR(x,yp) and 
e(p,d) do not intersect, p should be perceived as the 
occluded point, otherwise, it should be perceived as the 
mismatched point. 
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 Figure 2 shows the results of using the above 
method to detect occlusion on Tsukuba’s left view. In 
the figure, there are the original image, the results of 
this paper and the ground truth successively from left to 
right. In order that the result of right disparity image 
are also needed in occlusion tests, and there exist some 
errors in the right disparity image produced by 
proposed method, so there are some differences 
between the occlusion test result in this paper and the 
ground truth. 
 

 
(a) Original image         (b) Detected occlusion 

 
(c) Ground truth 

Figure 2. Result of occlusion detection on Tsukuba. 

 
4. 2. Disparity refinement based on adaptive 
window 
 After classifying error points, different updating 
strategies can be adopted according to different error 
types. It can be known that the occluded point usually 
come from background pixels, therefore they can be 
updated by values with the minimum disparity in their 
adjacent background areas; while mismatched point 
usually occurs on object surfaces with complex textures, 
in either foreground or background, and the disparities 
in the adjacent areas do not vary too much, so these 
error points can be refined according to the statistical 
result of disparity values in adjacent areas. This paper 
proposes to build an adaptive window based on color 

similarity and Euclid distance for each error point. 
Theoretically, areas with similar colors should possess 
similar disparity values, the values of error points can 
be refined according to disparity statistics inside of the 
window. The construction process of adaptive windows 
is similar to original variable window (Zhang et al. 
2009), for any random error point p, define a four-
element set as illustrated in formula (11): 
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 The elements in the four-element set form two 
orthogonal line segments in horizontal and vertical 
directions where p is located, as illustrated in 
formula(12). 
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 The length of these two segments can be decided 
under the constraints of color and distance in formula 
(13), where L1、L2、τ1 and τ2  are user defined 
parameters, and their relations should meet: L1>L2 and 
τ1>τ2. 
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 In formula (13), the parameter q+ means the 
adjacent pixel following q. Ds(p,q) represents the Euclid 
distance between p and q. Dc(p,q) is the color difference 
between p and q, which calculating as illustrated in 
formula(14). 
 

 
(14) 

 
 Being different from original variable window 
(Zhang et al. 2009), this paper improves the constraints. 
Formula (13a) set an upper limit value for the size of 
the window; formula (13b) regulate that not only the 
color difference between any random pixel q and p, but 
also the color difference between the q’s following pixel 
and p must be less than a threshold, so that part of the 
interference of image noise can be excluded; while 
formula (13c) regulate that when the distance between 
q and p is more than L2, a smaller threshold value is 
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needed to further constrain the color difference 
between q and p, so as to better control the accuracy of 
the window size, making it possible to gain a relatively 
large window in areas where the color difference is 
small, and avoiding the window to be too small in areas 
with rich textures. 
 After establishing the foregoing orthogonal 
segments for each error point, all horizontal segments 
of the pixels on the vertical segment where p is located 
are combined together to form the p-centered adaptive 
window, as illustrated in formula (15). 
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 Figure 3 shows the result of the adaptive window 
for four pixel points in Teddy left view. It can be seen 
that the shape of the window can change arbitrarily, 
and the bounding area of the window is basically 
consistent with that of the color, whereas in areas with 
smaller color differences, the window can reach the 
preset maximum value. 
 

 
Figure 3. Examples of adaptive window construction. 

 
 After establishing the adaptive window, according 
to the previous analysis, the error points caused by 
occlusion could be updated by the minimum value of 
the reliable point in the window; and the error points 
caused by mismatch could be refined by the reliable 
point with the largest number inside the window. The 
concrete refinement method is illustrated in formula 
(16), where N*(p) stands for the set of reliable disparity 
points in the window centered in p; Ψ(dq) is the 
statistical histogram of N*(p). 
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 At last, this paper processes a 3x3 median 
filtering on the disparity image to further remove 
disparity noise. After that, the procedure of the 
algorithm is completed. 
 
5. Experiment and Analysis 
 The proposed method has been parallel 
optimized, tested and evaluated on the nVIDIA GeForce 
GTS450 graphic card (192 CUDA cores and 1G graphic 
memory). Parameter settings involved in the 
optimization process are provided in Table 1. Other 
relevant parameters are set to the default value in 
reference paper. 
 

Table 1. Parameter settings. 

Parameters 
λcens

us 
λAD τ L1 L2 τ1 τ2 

Value 50 10 
6
0 

32 17 
2
0 

6 

 
 In terms of accuracy evaluating, this paper 
verifies the proposed method on the classic Middlebury 
benchmark: Tsukuba、Venus、Teddy and Cones. The 
results of disparity estimation are illustrated in figure 4, 
where the first column is the original image, the second 
is the ground truth, the third is the results of proposed 
method and the fourth column is the difference 
between the result of proposed method and the ground 
truth, in which the black area means the error on 
occlusion region and the gray area means the error on 
non-occlusion region. From the result of disparity 
estimation, it can be seen that the proposed method has 
more accurate result on the occlusion area, especially in 
Venus and Teddy, and the area with repeated textures 
(the net-like structure in the upper right) in Cones. But 
for the object’s bounding area in Tsukuba and the 
bottom area of Teddy, the result of proposed method 
need further improvement. 
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(a) Original Image 

 

 
(b) Ground Truth 

 
(c) Proposed Result 

 
(d) Errors 

Figure 4. Results of proposed algorithm on the Middlebury 
datasets. 

 Submitting the third column of image in figure 4 
to the Midllebury evaluation website, the quantitive 
results as shown in table 2 can be achieved. Table 2 
displays the error pixels’ proportion in all pixels, and 
the threshold value of error is 1, meaning that if the 
difference between computed disparity value and the 
standard value is bigger than 1, then it should be 
marked as an error. There are three types of errors all 
together, namely, nonocc: the error pixels’ proportion 
in non-occlusion areas; all: the error pixels’ proportion 
in all areas; and disc: the error pixels’ proportion in 
discontinuous areas. Other algorithms involved in the 
comparison include: the effective SemiGlob method 
(SemiGlob), the classic adaptive weight method (AW), 
the method based on iterative disparity refinement 
(IterRefine), the method based on adaptive windows 
(VariableWnd) and the exponential step-size adaptive 
weight (ESAW). The latter three of them are real-time 
stereo matching method based on CUDA, and the 
IterRefine is the most up-to-date real-time stereo 
matching method in Middlebury database. 
 From table 2 we can see that since ESAW method 
is an AW based method with a simplification on 
aggregation process, it’s not as effective as the AW 
method, which is consistent with the previous analysis. 
IterRefine method has conducted disparity refinement 
on the basis of ESAW, and has a better effect even than 
AW method. However, the proposed method is better 
than IterRefine, bringing the highest accuracy among all 
real-time stereo matching methods, and its average 
error rate is equivalent to that of SemiGlob method, 
with nearly 1 point lower than AW method and 30% 
higher than that of ESAW method. This should be 
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mainly attributed to the accurate computation results in 
occlusion and complex texture regions. 
 In terms of execution time evaluation, the 
proposed method is mainly compared with ESAW 
method, which is widely recognized as a good algorithm 
of real time. Besides, the proposed method is an 
improved method based on ESAW. Table 3 provides the 
average execution time of the two methods on four 
Middlebury evaluating sequences, which is the total 
time of estimating two disparity maps for both left and 
right views. It can be seen that the proposed method, 
having a procedure of disparity refinement which ESAM 
does not have, is slower than ESAW. The speed of 

processing for Tsukuba by proposed method can reach 
nearly 20fps. But for images with larger resolution ratio 
and more disparity hypothesis levels, the proposed 
method cannot meet the real-time requirements. 
However, it's worth mentioning that the algorithm’s 
execution time is closely related to the performance of 
GPU and the degree of parallel optimization. 
Considering the good parallel potential of proposed 
method, if using a GPU with more CUDA cores and 
larger memory, or conducting more in-depth parallel 
optimization according to the architecture, the 
execution time of the algorithm will be markedly 
improved. 

 
Table 2. Quantitative results on the Middlebury datasets. / %. 

Algorithm 
Avg. % Bad 
Pixels 

Tsukuba Venus Teddy Cones 

nonocc all disc nonocc all disc nonocc all disc nonocc all disc 

Proposed 5.69 1.66 2.04 8.82 0.42 0.84 3.10 5.36 10.7 14.7 2.98 9.26 8.40 

SemiGlob 5.76 2.61 3.29 9.89 0.25 0.57 3.24 5.14 11.8 13.0 2.77 8.35 8.20 

AW 6.67 1.38 1.85 6.90 0.71 1.19 6.13 7.88 13.3 18.6 3.97 9.79 8.26 

IterRefine 6.20 1.45 1.99 7.59 0.40 0.81 3.38 7.65 13.3 16.2 3.48 9.34 8.81 

VariableWnd 7.60 1.99 2.65 6.77 0.62 0.96 3.20 9.75 15.1 18.2 6.28 12.7 12.9 

ESAW 8.21 1.92 2.45 9.66 1.03 1.65 6.89 8.48 14.2 18.7 6.56 12.7 14.4 

 
Table 3. Execution time (ms) for proposed algorithm and ESAW. 

Algorithm 
Tsukuba Venus Teddy Cones 

384x288, 11 disp. 
levels 

434x383, 16 disp. 
levels 

450x375, 44 disp. 
levels 

450x375, 44 disp. 
levels 

Proposed 53.7 114.8 219.1 232.6 
ESAW 34.8 75.3 174.3 202.4 

6. Conclusion 
 This paper proposes a real-time stereo matching 
method based on adaptive window disparity 
refinement. The main features of this method include: 
1) in association with the advantage of AD and Census 
transform, the proposed algorithm possesses a better 
adaptability to the variations of the image’s intensity 
distortion; 2) in the stage of disparity refinement, based 
on the assumption that areas with similar colors should 
have similar disparity values, an adaptive window is 
built for each error point, and the occlusion error and 
mismatch error are refined respectively according to 

statistics of disparity values in the adaptive window, so 
as to enable the algorithm to have better estimation 
results in areas with discontinuous depths; 3) the 
algorithm enjoys a high degree of parallelization, and 
after parallel optimization, it can reach real-time 
process for Tsukuba images, and compared to the 
existing real-time stereo matching methods listed on 
the Middlebury evaluation platform, the proposed 
method is the most accurate one. Nevertheless, there is 
still a long distance to go to apply this algorithm in 
actual environment, and the next step is to conduct 
further parallel optimization for the algorithm to 
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implement real-time process on the mainstream format 
images. In addition, there are too many parameters in 
proposed method, and the use of adaptive parameter 
mechanism is also worth researching. 
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